Ultrafast Heating Experiments and Diagnostics

Roger Falcone

Physics Department, UC Berkeley Advanced Light Source, LBNL

Warm materials are dynamic

- energy deposition of ~ one quanta per unit cell drives structural and other property changes that can be probed by time-resolved, x-ray scattering
- a variety of quanta can be utilized to "heat" materials
 - THz to far-IR directly drives phonon modes
 - near-IR excites electrons from valence to conduction bands
 - with adjustable excess-energy that rapidly couples to other modes
 - optical to uv excites electronic transitions and charge transfer states
 - soft x-rays couple core levels to valence states
 - hard x-rays penetrate and excite larger volumes
- coupling of excitation to various modes is defined by the time-scale
 - times << picoseconds can involve non-thermal processes</p>
 - photochemistry, electron re-scattering
 - times >> picoseconds involve thermal processes
 - mode diffusion, ablation
 - consider... relevant scale length <u>divided by</u> relevant velocity

Warm materials are studied by pump-probe techniques at a variety of facilities

- <u>small-scale laboratories</u> provide intense, short-pulse lasers to create and probe warm (high-energy-density) materials
 - probes include plasma x-ray sources, high-harmonic sources
- <u>intermediate-scale facilities</u> include petawatt lasers, pulsed particle beams, x-ray synchrotrons, free-electron lasers, etc., and are widely accessible
- <u>large-scale facilities</u> allow large volume studies to extreme high-energydensity conditions, but have limited access
 - NIF megajoule laser, Vulcan PW laser, OMEGA kJ laser, pulsed power

An example of HEDS science: liquid carbon

Molecular dynamics calculations predict: high density liquid

- mainly sp³ coordinated and low density liquid:
 - mainly sp coordinated

Glosli, et al, PRL 82, 4659 (1999)

Phases of Carbon

The goal is to study these phases under extreme conditions, liquid phases and melting lines

Diamond

BC8 (P > 1100 GPa)

- Body Centered Cubic with 8 atom basis
- Theoretical phase proposed in analogy with Si
- Semi-metallic, not yet found experimentally

Cubic

- Metallic, not yet found experimentally

Liquid carbon

 Astrophysics and Planetary Science: State of Carbon in Giant Planets

 High pressure research: Theoretical limit of diamond based technology

 Technological: Capsules for Inertially Confined Fusion (Carbon as an ablator material)

Phase Diagram of Carbon

- Predicted maximums in melting lines
- Triple point
- Negative slope of Diamond-BC8 transition
- Experimentally verified negative melting slope
 - (P > 500 GPa) by Shock experiments (Eggert et al. 2007)
- · Correa et al. PNAS 103(5) (2006)

Melting lines obtained by the two-phase simulation method

- Even with the most realistic molecular dynamic simulation, melting lines are not trivial to obtain
- Density Functional Molecular Dynamics on 128 carbon atoms
- Quantum mechanical electrons and Classical Ions
- Ab initio (no fitted parameters)
- Solid and Liquid initially present in same simulation
- Interface evolves at a given P and T.
- Most stable phase grows
- Melting line is bracketed recursively

Correa et al. PNAS 103(5) (2006)

Predicting absorption spectra

Quantum Molecular Dynamics does a great job in terms of predicting structural properties:

but we need to go further...

Can we reproduce experimental results and predict specific results for new conditions?

High-energy-density carbon has been probed by x-ray absorption (near and extended edge)

supports calculations indicating that the low-density phase of liquid carbon is predominately sp-bonded S. Johnson, et al

Silicon: PRL 91, 157403 (2003) Carbon: PRL 94, 057407 (2005)

Predicting high-T absorption spectra

Perturbed liquid state structure and dynamics can be probed by x-ray scattering (small and wide angle)

Time-resolved structural changes in H₂O are seen upon charge injection

Static scattering signal

Difference signal at 100 ps following charge injection

A. Lindenberg

 Implies molecular re-orientation around injected charge with similarities to thermally induced changes

Laser-sliced x-ray pulses from synchrotrons are used as tunable probes of HED matter

Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,1996

X-Ray FELs produce x-ray pulses: eventually may be tunable for spectroscopy

High-order harmonic radiation from multi-TW lasers produces intense soft x-ray fluxes for pump-probe HED science

- tunable soft x-ray peak power > 1 MW
- beam divergence < 1 mrad
- shot to shot fluctuations < 10%
- pulse length < 30 fs
- spatial and temporal coherence
- examine non-linear phenomena

Allison, Belkacem, Hertlein, VanTilborg

Ultrafast "x-ray streak cameras" enable high-speed recording of atomic dynamics

With space (1d) and time resolution, can record changing spectral response

Fastest streak cameras can resolve << picosecond

Dynamic mode 1000 shots

Static mode 1000 shots

Au photocathode

Jun Feng, Howard Padmore LBNL

Ultra-fast X-ray Streak Cameras at the ALS

Transmission Streak Camera

Reflection Streak Camera

LAWRENCE BERKELEY NATIONAL LABORATORY

Laser-generated strain, bond-breaking, and hot electron-phonon coupling can initiate a solid-to-liquid phase transition which can be probed by ultrafast x-ray scattering

Lindenberg et al., Phys Rev. Lett. 84, 111 (2000)

Disordering of a lattice through bond-breaking observed at even shorter times at the SPPS

- · (111) and (220) reflections measured
- · non-thermal melting observed

$$\frac{\tau_{(111)}}{\tau_{(220)}} = 1.6 \pm 0.2 = \frac{G_{(220)}}{G_{(111)}}$$

$$\sqrt{2^2 + 2^2 + 0^2} / \sqrt{1^2 + 1^2 + 1^2} = \sqrt{\frac{8}{3}}$$

SPPS Collaboration

High Energy Density Matter occurs widely

Hot Dense Matter (HDM) occurs in:

- Supernova, stellar interiors, accretion disks
- Plasma devices: laser produced plasmas, Z-pinches
- Directly and indirectly driven inertial fusion experiments
- Warm Dense Matter (WDM) occurs in:
 - Cores of large planets
 - X-ray driven inertial fusion experiments

The defining concept of warm dense matter (WDM) is coupling

weakly coupled plasmas

- plasma seen as separate point charges
- plasma is a bath in which all particles are treated as points

when either ρ increases or T decreases, $\Gamma > 1$

- particle correlations become important
- energy levels shift and ionization potentials are depressed

WDM is defined by temperature relative to the Fermi energy

- Fermi energy, E_{Fermi} , = maximum energy level of e^- in cold matter
- When $T \ll E_{Fermi} = T_{Fermi}$ standard condensed matter methods work
- When T ~ T_{Fermi} one gets excitation of the core
 - Ion e- correlations change and ion-ion correlations give short and long range order

WDM, created by isochoric heating using short pulses, will isentropically expand sampling phase space

- XFEL can heat matter rapidly and uniformly to create:
 - Isochores (constant ρ)
 - Isentropes (constant entropy)
- Using underdense foams allows more complete sampling
 - Isochores (constant ρ)
 - Isentropes (constant entropy)

Ablation of a surface under high energy flux

Thomson scattering enables direct determination of both material and plasma properties

- 25 eV, 4x10²³ cm⁻³ plasma XFEL produces10⁴ photons from the free electron scattering
- Can obtain temperatures, densities, mean ionization, velocity distribution from the scattering signal

By varying the scattering angle, collective modes of dense matter are probed

X-rays provide a unique probe of HED matter

- Due to absorption, refraction, & reflection, visible lasers cannot probe high density
- X-ray scattering from free electrons provides a measure of the T_e, n_e, f(v), and plasma damping
- x-ray FEL scattering signals will be well above noise for HED matter

Compton/Thomson scattering with optical probe

O. L. Landen et al. JQSRT (2001)

 θ =180°, α =0.3

Scattering on free electrons

Fermi degenerate plasma regime: $T_e < T_F$

Strongly coupled plasma regime : $T_e > T_F$, $\Gamma_{ee} > 1$

 Γ_{ee} =Coulomb potential energy/Kinetic energy of free electrons

ldeal plasma: $\Gamma_{\rm ee}$ <1

Compton/Thomson scattering with x-ray probe in dense matter

O. L. Landen et al. JQSRT (2001)

Fermi degenerate plasma regime: $T_e < T_F$

Strongly coupled plasma regime : $T_e > T_F$, $\Gamma_{ee} > 1$

 $\Gamma_{\rm ee}$ =Coulomb potential energy/Kinetic energy of free electrons

Ideal plasma: $\Gamma_{\rm ee}$ <1

Scattering on free and weakly bound electrons

Scattering regimes in the ρ -T plane

In dense plasmas

- standard theoretical approaches fail
- theoretical uncertainties are large

Collective scattering in dense plasmas

- probes transition region

X-ray source

- penetrates dense plasmas

Forward scattering and plasmon in dense matter

Forward scatter on Plasmons

Scattering parameter α

$$\alpha = 1/(k\lambda_D) \sim \lambda_L/(4\pi\lambda_D \sin(\theta/2)) \rightarrow \lambda^*/\lambda_D$$

 α >1 : Collective regime, $\lambda^* > \lambda_D$,

Orderly oscillatory behavior under the long-range Coulomb f orces.

The density fluctuation in the plasma behave collectively and oscillate around ω_{p} .

With x-ray probe for WDM, strong asymmetry or almost gone of blue-shifted peak.

From the plasmon peak, we can have better accurate info rmation about T_e!!

From the fluctuation-dissipation theorem

$$S(k,\omega) = \frac{1}{2\pi N} \int e^{i\omega t} < \rho_e(k,t) \rho_e(-k,0) > dt,$$

$$S(k,\omega) = -\frac{\varepsilon_0 h k^2}{\pi e^2 n_o} \frac{1}{1 - e^{h\omega/k_B T}} \operatorname{Im} \varepsilon^{-1}(k,\omega),$$

$$\frac{S(k,\omega)}{S(-k,-\omega)} = \exp(-\frac{h\omega}{k_B T})$$
 Sensitive to $T_{\underline{e}}$

Current Thomson scattering experiments are done at large laser facilities

1-D HYADES Code predicts plasma conditions under shock propagation

0.5

1.5

2

2.5

3 3.25 3.5

3.75

4

0.03

0.02

0.01

x /cm

1

0

-0.01

0

Omega laser = 17 beams, 480 J each, total energy \sim 8.7 kJ,

Target: Be-foil, thickness 0.24 mm Laser intensity: $3 \times 10^{14} \text{ W/cm}^2$

Pulse duration: 3 ns

WDM with \sim 43 µm depth is generated over 500 ps with uniform condition.

X-ray Thomson scattering on compressed Be

NLUF experiments in May 2007 measured x-ray scattering on compressed Be

Inter-combinations Mn He-α

Mn Calibration

Scatter

data

We obtained plasmon scattering from shock compressed Be - position of the plasmon resonance yields density $\sim n_e = 1 \times 10^{23} \text{ cm}^{-3}$, $T_e = 10 \text{ eV}$ at 3 ns

2 ns drive beams at t = 0; analyze plasma between 2.6-3.4 ns.

Thomson scattering at large laser facilities or XFELs?

- for x-ray pulse backlighting of warm matter on high-energy laser systems, we use multiple laser beams with about 10,000 J in a few ns, for pumping a plasma on a surface that radiates K- α and He- α x-rays
- this converts to about 1 J of x-ray photons radiated into 4π
- there is then about 1 mJ for use in illuminating the sample, within the collected solid angle
- this probe x-ray beam compares well in energy per pulse with the LCLS per pulse energy, which has 1 mJ
- LCLS pulses will be more collimated, narrower BW, and shorter in duration (~ 200 fs)

Materials science and lattice dynamics at ultrahigh pressures and strain rates define a frontier of condensed matter science

Unexplored regimes of solid-state dynamics at extremely high pressures and strain rates will be accessible on NIF

[D.H. Kalantar et al., PRL 95,075502 (2005); J. Hawreliak et al., PRB, in press (2006)]

Intense x-ray fluxes from LCLS will enable real-time in situ measurements of microstructure evolution at high pressure

Molecular Dynamics simulations indicates shock-driven phase transitions take ~ 1 ps

Grey = static BCC Blue = compressed BCC Red = HCP

- 8 million atoms, total run time 10 ps (K. Kadau LANL)
- Require LCLS to time-resolve kinetics of the transition

X-Ray FELs will enable a range of HED experiments (talk by R.W. Lee)

Creating Warm Dense Matter

- Generate ~ 10 eV solid density matter
- · Measure the equation of state

Probing dense matter with Thomson Scattering

- · Perform scattering from solid density plasmas
- Measure n_e , T_e , <Z>, f(v)

Plasma spectroscopy of Hot Dense Matter

- · Use high energy laser to create uniform HED plasmas
- · Measure collision rates, redistribution rates, ionization kinetics

Probing High Pressure phenomena

- Use high energy laser to create steady high pressures
- · Produce shocks and shockless high pressure systems
- Study high pressure matter on time scales < 1 ps
- · Diagnostics: Diffraction, SAXS, Diffuse scattering, Thomson scattering

Preparation for foils experiments: Dispersed Cu spectrum

Properties of Copper

Optical excitation process: Eesley, PRB 1986

We photoexcite sample with 3eV photons. Absorption from the d-band to pstates above E_F is strong. This is the same absorption process that gives Cu its color.

K: thermal conductivity ^b (W/m K)	401
C _I : lattice heat capacity ^b (J/m ³ K)	3.43×10^{6}
A: electronic heat capacity ^b (J/m ³ K ²)	96.6
τ_{e-ph} : electron-phonon collision time ^c (sec)	2.4×10^{-14}
α : absorptivity ^d (m ⁻¹)	7.1×10^{7}
G: electron-phonon coupling [Eq. (4)] (W/m ³ K)	2.6×10^{17}
m: electron mass ^b (kg)	9.1×10^{-31}
N: conduction-electron density ^e (m ⁻³)	8.4×10^{28}
v: longitudinal sound velocity ^b (m/sec)	5010
T_d : Debye temperature ^b (K)	343
D: Debye integral [Eq. (5)]	0.62

Eesley, PRB 1986

Photoemission from laser-heated Copper

Nelson, APL 2005

- Spectra measured at 0 ps $< \Delta t < 4 ps$
- The middle curve is "heated" (300 µJ); the upper curve is ionized (2.5 mJ).
- Spot size 500 x 700 μm
- Shows rapid depopulation of the d-band

Relevant time-scale is measurable

Widmann, *PRL* 2004: transient measurements on melted gold. Found a "quasi-steady state" that lasts a few picoseconds, before the sample starts expanding; the ion cores are still comparatively cool, and the electrons are very hot. It appears that the duration of the QSS is set by electron-phonon coupling in this non-equilibrium state.

So by the time the electrons equilibrate with the lattice, the material's already expanding. So you never measure a "thermal" sample.

Elsayed-Ali *PRL* 1987 (Copper): *e-ph* relaxation ~ 1 - 4 ps

Eesley *PRB* 1986 (Copper): *e-ph* relaxation < 1 ps

Schoenlein *PRL* 1987 (Gold): *e-ph* relaxation ~ 2 - 3 ps

Widmann *PRL* 2004 (Gold): *e-ph* relaxation > 5 ps

Streak camera resolution ~ 2 ps

Challenges to theorists: Absorption and scattering cross-sections

At the highest intensities (i.e., up to requirements for atomic-resolution single macromolecule imaging: 10^{22} W/cm²):

- Does the ratio of absorption to scattering stay the same, affecting singe macromolecular imaging studies (dependence of damage and signal)?
- Will Raman processes allow useful broadbanding of the LCLS pulse, for absorption spectroscopy (NEXAFS, etc.)?
- Will transparency or guiding effects be important, for deeper penetration in HEDS studies?

Challenges under "warm" conditions in condensed matter, materials physics, and plasma physics can be addressed

- understand the dynamic interplay between **electronic structure** (energy levels, charge distributions, bonding, spin) and **atomic structure** (coordination, bond distances, arrangements)

Fundamental time scales range from picoseconds (conformational relaxations in molecular systems, and electron-lattice energy transfer times in solids), to \sim 100 fs (vibrational periods), to \sim 10 fs (electron-electron scattering), to <1 fs (electron-electron correlations)

X-rays are ideal probes of atomic structure, electronic structure, and plasma properties

New x-ray sources should enable the application of x-ray spectroscopic and scattering techniques (XANES, EXAFS, XMLD, XMCD, RIXS) on fundamental time-scales.